Soft Computing
  • Soft Computing
  • Introduction
  • Requirement
    • Data Set
  • Applications
    • Matlab
      • Perceptron
        • Little Red Riding Hood
          • Output
      • SVM
        • Code
        • Execution
      • TreeDecision
        • Code
        • Execution
      • Kmeans - Kmedoids
        • Code
        • Execution
      • Dimensionality Reduction
        • Principal component analysis (PAC)
          • Code
          • Execution
    • Python
      • Setup
Powered by GitBook
On this page

Was this helpful?

  1. Applications
  2. Matlab
  3. Dimensionality Reduction

Principal component analysis (PAC)

PreviousDimensionality ReductionNextCode

Last updated 5 years ago

Was this helpful?

The main purpose of principal component analysis(PCA) is to reduce the dimensionality from p to d, where d<p, while at the same time accounting for as much of the variation in the original data set as possible. With PCA, we transform the data to a new set of coordinates or variables that are a linear combination of the original variables. In addition, the observations in the new principal component space are uncorrelated. The hope is that we can gain information and understanding of the data by looking at the observations in the new space.