IOT - Bosch
  • Introduction
  • Devices
    • Bosch XDK 110
      • Introduction
      • Operating System
      • Hardware
        • Sensors
          • Accelerometer
            • C
          • Gyroscope
            • C
            • Mita
          • Magnetometer
            • C
          • Environmental
            • C
            • Mita
          • Ambient Light
            • C
            • Mita
          • Acoustic
            • C
      • Software
        • XDK WorkSpace
          • Structure
          • Debug
          • Supported languages
            • C
              • Static Library (.a)
            • XDK Live - Mita
            • MicroFlo
      • Connectivity
        • Bluetooth Low Energy (BLE)
          • Overview
          • General Info
          • Implementation
            • C
            • XDK Live
        • WI-FI
          • OverView
          • Implementation
            • C
            • XDK Live
        • WI-FI Enterprise
      • Protocols
        • CoAP
          • Overview
          • Implementation -TBD
        • HTTP
          • Overview
          • Structure and Methods
          • Implementation
            • C - Rest
            • C - Post
            • XDK Live
        • HTTPS
          • Overview
          • Implementation TBD
        • LWM2M
          • Overview
          • Implementation TBD
        • MQTT
          • Overview
          • Implementation
            • C
            • XDK Live
        • USB
          • Overview
          • Implementation TBD
      • Data Storage
      • XDK Extension Bus
      • Community
      • Applications
        • Language C
          • HomeAssitant - MQTT
            • Prerequisites
            • Server
            • Device
          • IOTA-MQTT-XDK
            • Prerequisites
            • XDK110
            • Mqtt JSON to MAM
            • SensorHub
            • Demo
        • Language XDK Live
          • MQTT
            • Hello World
            • HomeAssistant
              • Prerequisites
              • Server
              • Device
            • Docker-HomeAssistant
          • HTTP
            • Roku Remote Control
              • Roku API
              • MITA
                • Example
    • Bosch AMRA
    • Bosch GLM 100C
    • Bosch FLEXIDOME IP panoramic
    • Bosch GLM 100C
    • Bosch Rexroth Nexo
    • Bosch Rexroth PRC 7000
    • Bosch RRC / CT100
    • Bosch Rexroth IoT Gateway
  • Bosch IOT Solutions
    • Bosch IOT Projects
      • Smart Home
      • Industry 4.0
      • Smart Cities
      • Connected-mobility
    • Bosch IOT Suite
      • Bosch Analytics
      • Bosch IOT Hub
      • Bosch Iot Permission
      • IoT Remote Manager
      • IoT Rollouts
      • IoT Things
      • Demo TBD **
    • BPM and BRM
  • IOTA
    • Introduction
      • Tangle
      • Glossary
      • Differences with other tech
      • How does iota work
      • Developers
    • Qubic
      • What is Qubic?
      • Target
      • Qubic Protocol
    • Ecosystem
    • Applications
      • Python
      • XDK110
        • Prerequisites
        • XDK110
        • Mqtt JSON to MAM
        • SensorHub
    • Bosch/IOTA
  • ByteBall
    • SmartContract
    • Use Case
      • BoshCoins
Powered by GitBook
On this page

Was this helpful?

ByteBall

Byteball is a decentralized system that allows tamper proof storage of arbitrary data, including data that represents transferrable value such as currencies, property titles, debt, shares, etc. Storage units are linked to each other such that each storage unit includes one or more hashes of earlier storage units, which serves both to confirm earlier units and establish their partial order. The set of links among units forms a DAG (directed acyclic graph).

  • Overview - Table of Contents

  • What Is Byteball Bytes?

  • Getting Started With Byteball Bytes

  • How To Get A Byteball Bytes Wallet?

  • Byteball Bytes Resources

  • How To Buy Byteball Bytes?

  • Latest Byteball Bytes News

There is no single central entity that manages or coordinates admission of new units into the database, everyone is allowed to add a new unit provided that he signs it and pays a fee equal to the size of added data in bytes. The fee is collected by other users who later confirm the newly added unit by including its hash within their own units. As new units are added, each earlier unit receives more and more confirmations by later units that include its hash, directly or indirectly.

There is an internal currency called ‘bytes’ that is used to pay for adding data into the decentralized database. Other currencies (assets) can also be freely issued by anyone to represent property rights, debt, shares, etc. Users can send both bytes and other currencies to each other to pay for goods/services or to exchange one currency for another; the transactions that move the value are added to the database as storage units.

How Does Byteball Work?

Byteball doesn’t have a blockchain nor blocks. Transactions are their own blocks and don’t have to connect in a straight chain; They’re linked to multiple previous transactions and form a structure called a DAG (directed acyclic graph). Directed Acyclic Graph

Storage units, or balls, are linked to each other such that each storage ball includes one or more hashes of previous storage balls. Byteball connects transactions by signing the hashes of previous transactions to the new one.

This connection between storage balls not only consistently confirms earlier data put in the database but also establishes a partial order in which the storage balls can be referred to. Byteballs has no block size issues simply because it doesn’t have blocks.

The benefits of linking data to create a DAG include:

  • Instant Confirmation –

    DAG technology allows a transaction to get confirmation from Byteball peers almost instantaneously because the system doesn’t rely on miners to verify transactions.

  • Transaction Finality –

    Byteball’s system allows definite transaction completion alerts. This is unlike Bitcoin where the number of confirmations can be used to calculate only the probability that the transaction completed.

  • Lower Energy Burden –

    Byteball requires significantly less energy to keep its network working and secure than proof of work cryptocurrencies.

PreviousBosch/IOTANextSmartContract

Last updated 5 years ago

Was this helpful?