IOT - Bosch
  • Introduction
  • Devices
    • Bosch XDK 110
      • Introduction
      • Operating System
      • Hardware
        • Sensors
          • Accelerometer
            • C
          • Gyroscope
            • C
            • Mita
          • Magnetometer
            • C
          • Environmental
            • C
            • Mita
          • Ambient Light
            • C
            • Mita
          • Acoustic
            • C
      • Software
        • XDK WorkSpace
          • Structure
          • Debug
          • Supported languages
            • C
              • Static Library (.a)
            • XDK Live - Mita
            • MicroFlo
      • Connectivity
        • Bluetooth Low Energy (BLE)
          • Overview
          • General Info
          • Implementation
            • C
            • XDK Live
        • WI-FI
          • OverView
          • Implementation
            • C
            • XDK Live
        • WI-FI Enterprise
      • Protocols
        • CoAP
          • Overview
          • Implementation -TBD
        • HTTP
          • Overview
          • Structure and Methods
          • Implementation
            • C - Rest
            • C - Post
            • XDK Live
        • HTTPS
          • Overview
          • Implementation TBD
        • LWM2M
          • Overview
          • Implementation TBD
        • MQTT
          • Overview
          • Implementation
            • C
            • XDK Live
        • USB
          • Overview
          • Implementation TBD
      • Data Storage
      • XDK Extension Bus
      • Community
      • Applications
        • Language C
          • HomeAssitant - MQTT
            • Prerequisites
            • Server
            • Device
          • IOTA-MQTT-XDK
            • Prerequisites
            • XDK110
            • Mqtt JSON to MAM
            • SensorHub
            • Demo
        • Language XDK Live
          • MQTT
            • Hello World
            • HomeAssistant
              • Prerequisites
              • Server
              • Device
            • Docker-HomeAssistant
          • HTTP
            • Roku Remote Control
              • Roku API
              • MITA
                • Example
    • Bosch AMRA
    • Bosch GLM 100C
    • Bosch FLEXIDOME IP panoramic
    • Bosch GLM 100C
    • Bosch Rexroth Nexo
    • Bosch Rexroth PRC 7000
    • Bosch RRC / CT100
    • Bosch Rexroth IoT Gateway
  • Bosch IOT Solutions
    • Bosch IOT Projects
      • Smart Home
      • Industry 4.0
      • Smart Cities
      • Connected-mobility
    • Bosch IOT Suite
      • Bosch Analytics
      • Bosch IOT Hub
      • Bosch Iot Permission
      • IoT Remote Manager
      • IoT Rollouts
      • IoT Things
      • Demo TBD **
    • BPM and BRM
  • IOTA
    • Introduction
      • Tangle
      • Glossary
      • Differences with other tech
      • How does iota work
      • Developers
    • Qubic
      • What is Qubic?
      • Target
      • Qubic Protocol
    • Ecosystem
    • Applications
      • Python
      • XDK110
        • Prerequisites
        • XDK110
        • Mqtt JSON to MAM
        • SensorHub
    • Bosch/IOTA
  • ByteBall
    • SmartContract
    • Use Case
      • BoshCoins
Powered by GitBook
On this page
  • The Qubic epoch
  • Phase 1: Resource Test
  • Phase 2: Processing

Was this helpful?

  1. IOTA
  2. Qubic

Qubic Protocol

PreviousTargetNextEcosystem

Last updated 5 years ago

Was this helpful?

The Qubic protocol specifies the construction, execution, and evolutionary life-cycle of qubics. It leverages the IOTA protocol for secure, decentralized communication between the various participants. Additionally, since IOTA has its own built-in payment system, IOTA tokens are used to provide an incentive system for qubic operators. Anyone can decide for themselves at what threshold a reward becomes interesting enough to participate.

The Qubic epoch

An assembly is initiated by publishing a set of global parameters on the Tangle in the form of an IOTA transaction. This assembly transaction can subsequently be used by oracles to find the assembly and to decide if they want to join it.

New oracles cannot simply join the assembly at random times. Instead, an assembly can open up to new oracles at certain predefined time intervals, called epochs. During an epoch, the oracles that constitute the assembly are all known and fixed. Within each epoch, all oracles will process the same set of events and consequently trigger the same set of qubics to run.

Each epoch has an exact start time and duration, which are similarly published as global parameters as a transaction on the Tangle. The epoch transaction also details if and how other oracles can join the assembly during the epoch. An epoch is itself split into two distinct phases: the resource test phase and the qubic processing phase.

Phase 1: Resource Test

Phase 2: Processing